Improving molecular cancer class discovery through sparse non-negative matrix factorization
نویسندگان
چکیده
منابع مشابه
Improving molecular cancer class discovery through sparse non-negative matrix factorization
MOTIVATION Identifying different cancer classes or subclasses with similar morphological appearances presents a challenging problem and has important implication in cancer diagnosis and treatment. Clustering based on gene-expression data has been shown to be a powerful method in cancer class discovery. Non-negative matrix factorization is one such method and was shown to be advantageous over ot...
متن کاملCancer Class Discovery Using Non-negative Matrix Factorization Based on Alternating Non-negativity-Constrained Least Squares
Many bioinformatics problems deal with chemical concentrations that should be non-negative. Non-negative matrix factorization (NMF) is an approach to take advantage of non-negativity in data. We have recently developed sparse NMF algorithms via alternating nonnegativity-constrained least squares in order to obtain sparser basis vectors or sparser mixing coefficients for each sample, which lead ...
متن کاملSeparation of Reflection Components by Sparse Non-negative Matrix Factorization
This paper presents a novel method for separating reflection components in a single image based on the dichromatic reflection model. Our method is based on a modified version of sparse non-negative matrix factorization (NMF). It simultaneously performs the estimation of body colors and the separation of reflection components through optimization. Our method does not use a spatial prior such as ...
متن کاملLearning quantifiable associations via principal sparse non-negative matrix factorization
Association rules are traditionally designed to capture statistical relationship among itemsets in a given database. To additionally capture the quantitative association knowledge, Korn et.al. recently propose a paradigm named Ratio Rules [6] for quantifiable data mining. However, their approach is mainly based on Principle Component Analysis (PCA), and as a result, it cannot guarantee that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2005
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/bti653